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FOREWORD

The Primer on Tritium Safe Handling Practices is approved for use by all DOE
Components.  It was developed as an educational supplement and reference for operations and
maintenance personnel involved in tritium handling.  This Primer is intended to help operations
and maintenance personnel perform their duties safely by increasing their knowledge of tritium
handling and control, thus reducing the likelihood of tritium releases and exposures, and by
providing basic emergency responses in the case of a tritium release.

The Department of Energy (DOE) Primers are a set of fundamental handbooks on
safety-related topics of interest in the DOE Complex.  The Primers are written as an educational
aid for operations and maintenance personnel.  The Primers attempt to supply information in
an easily understandable form which will help them perform their duties in a safe and reliable
manner.  Persons trained in other technical areas may also find the Primers useful as a guide or
as a reference source for further investigation.

The DOE Primer series draws heavily upon the subject-specific Primers and training
materials previously developed by DOE sites (Savannah River, Rocky Flats, and Mound) and
is intended for distribution to all DOE contractors.  Information is also drawn from the
applicable volumes of the DOE Fundamentals Handbook series developed by the DOE Office
of Nuclear Safety Policy and Standards.  References to other material sources are indicated in
the text where applicable and a bibliography is included.

Beneficial comments in the form of recommendations and any pertinent data that may
be of use in improving this document should be addressed to 

John A. Yoder
EH-63/GTN
U.S. Department of Energy
Washington, D.C. 20585
Phone (301) 903-5650
Facsimile (301) 903-6172

by using the U.S. Department of Energy Standardization Document Improvement Proposal
Form (DOE F 1300.x) appearing at the end of this document or by letter. 

Key Words:  Hydrogen, Tritium, Half-life, Radiation, Beta particles, Contamination, Health
Physics, Monitoring, Bioassay, Metabolism, Emergency Response
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OVERVIEW

Tritium Safe Handling Practices was prepared as an information resource for personnel
who perform tritium handling functions at DOE facilities.   A basic understanding of  the
properties and hazards associated with tritium will help personnel understand the impact of their
actions on the safe and reliable operation of facility systems. 

Tritium Safe Handling Practices contains an introduction and sections on the following
topics:

C Radiological Fundamentals

C Physical and Chemical Properties of Tritium

C Biological Properties of Tritium

C Tritium Monitoring

C Radiological Control and Protection Practices

C Emergency Response

This Primer is provided as an information resource only, and is not intended to replace
any radiation worker or hazardous materials training.  The Primer presents the theoretical
concepts and good practices that form the basis of safe tritium handling.

Specific references have been cited as footnotes, and a bibliography is available at the
end of the Primer.  These sources provide further reading and specific guidance.  This document
contains selected information from the Health Physics Manual of Good Practices for Tritium
Facilities, which was prepared by EG&G Mound Applied Technologies at the Mound tritium
facility.  The authors acknowledge their expertise and experience.



Department of Energy
Handbook

PRIMER ON
TRITIUM SAFE HANDLING

PRACTICES



DOE-HDBK-1079-94
TRITIUM SAFE HANDLING PRACTICES

                                                               
Rev. 0   Tritium

This page left intentionally blank.



Tritium Primer DOE-HDBK-1079-94 TABLE OF CONTENTS

                                                               
Rev. 0   TritiumPage i

TABLE OF CONTENTS

LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iv

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   1

RADIOLOGICAL FUNDAMENTALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   3

Hydrogen and Its Isotopes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   3
Sources of Tritium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   4
Stable and Unstable Nuclides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   5
Ions and Ionization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   5
Types of Radiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   6
Radioactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   9

PHYSICAL AND CHEMICAL PROPERTIES OF TRITIUM. . . . . . . . . . . . . . . . . . . . . . .  11

Nuclear and Radioactive Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
Penetration Depths of Beta Particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
Chemical Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
Contamination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

BIOLOGICAL PROPERTIES OF TRITIUM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Metabolism of Gaseous Tritium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
Metabolism of Tritiated Water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
Metabolism of Other Tritiated Species. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
Metallic Getters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
Tritiated Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
Other Tritiated Gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
Biological Half-Life of HTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
Bioassay and Internal Dosimetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
Sampling Schedule and Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
Dose Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

TRITIUM MONITORING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

Air Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
Differential Air Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
Discrete Air Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
Process Monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23



Tritium Primer DOE-HDBK-1079-94 TABLE OF CONTENTS

                                                                                                                                                                                                 
Tritium    Rev. 0Page ii

Surface Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Tritium Probes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
Off-Gassing Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

Liquid Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

RADIOLOGICAL CONTROL AND PROTECTION PRACTICES. . . . . . . . . . . . . . . . . . .  27

Airborne Tritium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
Secondary Containment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
Temporary Enclosures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28
Protection by Local Ventilation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28
Supplied-Air Respirators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
Supplied-Air Suits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

Protection from Surface Contamination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
Protective Clothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

Lab Coats and Coveralls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
Shoe Covers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
Gloves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

EMERGENCY RESPONSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

Emergency Steps to Take. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
Decontamination of Personnel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
Decontamination of Surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35



Tritium Primer DOE-HDBK-1079-94 LIST OF FIGURES

                                                               
Rev. 0   TritiumPage iii

LIST OF FIGURES

Figure 1  Hydrogen isotopes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   3
Figure 2  Radioactive decay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   5
Figure 3  Neutral and ionized atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   6
Figure 4  Alpha particle (or nucleus of a helium atom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   7
Figure 5  Alpha shielding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   7
Figure 6  Neutron shielding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   9
Figure 7  Half-life example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10
Figure 8 Reducing HTO uptake by washing after exposure to HTO vapor.. . . . . . . . . . . . . .  32



Tritium Primer DOE-HDBK-1079-94 LIST OF TABLES

                                                                                                                                                                                                 
Tritium    Rev. 0Page iv

LIST OF TABLES

Table 1  Hydrogen isotopes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   4
Table 2  Important nuclear properties of tritium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
Table 3  Penetration depths of tritium betas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12



Tritium Primer DOE-HDBK-1079-94 INTRODUCTION

                                                               
Rev. 0   TritiumPage 1

INTRODUCTION

This Primer is designed for use by operations and maintenance personnel to improve their
knowledge of tritium safe handling practices.  It is applicable to many job classifications and can
be used as a reference for classroom work or for self-study.  It is presented in general terms so that
it can be used throughout the DOE Complex.  

The information in this Primer should enable the reader to do the following:

C Describe methods of measuring airborne tritium concentration.

C List the types of protective clothing that are effective against tritium uptake from surface
and airborne contamination.

C Name two methods of reducing the body dose after a tritium uptake.

C Describe the most common method for determining the amount of tritium uptake in the
body.

C Describe the steps to take following an accidental release of airborne tritium.

C Describe the damage to metals that results from absorption of tritium.

C Explain how washing hands or showering in cold water helps reduce tritium uptake.

C Describe how tritium exchanges with normal hydrogen in water and hydrocarbons.

The organization of the Primer is as indicated in the Overview.  The following section contains
background information on "Radiological Fundamentals."  Those familiar with these topics may
elect to skip this section and  begin  reading at the section entitled "Physical and Chemical
Properties of Tritium."  Additional information about tritium is available from the sources listed in
the "Bibliography" section.
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1. Protium -  H (1 proton, 1 electron)
   -Stable (not radioactive)
   -Comprises 99.985% of natural hydrogen.

-+
n

2. Deuterium -   H or D (1 proton, 1 neutron, 1 electron)
    -Stable (not radioactive)
    -Comprises 0.015% of natural hydrogen.

-+
n

n

3. Tritium -   H or T (1 proton, 2 neutrons, 1 electron)
    -Radioactive
    -Comprises 10      parts of natural hydrogen.

3

-18
1

2
1

1
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Figure 1  Hydrogen isotopes

RADIOLOGICAL FUNDAMENTALS

This section provides a review of radiological fundamentals.  The reader is assumed to be
familiar with this information from radiological worker training.  The section discusses hydrogen
and its isotopes and describes basic radiological concepts.

Hydrogen and Its Isotopes

Atomic nuclei of a particular element (such as hydrogen or oxygen) have the same number of
protons (positively charged), but may have a different number of neutrons (no net charge).
Those that have a different number of neutrons are isotopes of that element.  Most elements exist
in nature in several isotopic forms.  For example, hydrogen has one proton.  The isotopes of
hydrogen either have no neutrons (normal hydrogen, called protium), one neutron (deuterium),
or two neutrons (tritium) (Figure 1).  Although isotopes of an element have almost the same
chemical properties, the nuclear properties can be quite different.



 14 
7

N %  1 
0
n 6  3 

1
H %  12 

6
C .
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a.  The curie (Ci) is a unit of activity defined as 3.7×10  disintegrations per second (dps).  A more basic unit10

is 1 dps, which is the definition of the becquerel (Bq).  Throughout this Primer, the curie will be used instead
of the becquerel.
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Nuclear notation uses the chemical symbol (H for hydrogen) and an arrangement of subscripts
and superscripts.  The total number of protons and neutrons is shown as a superscript:  H for1

protium, H for deuterium, and H for tritium. The number of protons (which identifies the2 3

element) is shown as a subscript.  However, the common practice of using H, D and T for these
isotopes, respectively, will be followed in this document, except where nuclear reactions are
illustrated.

The atomic masses, symbols, and natural abundances of the three isotopes of hydrogen are given
in Table 1.  

Table 1  Hydrogen isotopes

Symbol

Physical Common Name (%) units)
Natural Abundance (mass

Mass

H H Protium 99.985 1.0078251
1

H D Deuterium 0.015 2.014001
2

H T Tritium 1 × 10 3.016051
3 -18

Sources of Tritium

Tritium occurs naturally in the environment.  Reactions between cosmic radiation and gases in
the upper atmosphere produce most of the world's natural tritium.  For example,

Tritium converts into water and reaches the earth's surface as rain.  An estimated production
rate of 4 × 10  Ci/yr results in a world steady-state natural inventory of ~70 × 10  Ci.6 6 a

In addition, commercial producers of radioluminescent and neutron generator devices release
about 1 × 10  Ci/yr.  Atmospheric nuclear test explosions from 1945 to 1975 added about6

8 × 10  Ci of tritium to the environment, much of which has since decayed.  However, about9

5 × 10  Ci remain in the environment, mostly diluted in the oceans.  Underground nuclear tests8

appear to add little tritium to the atmosphere.  The nuclear power and defense industries now



 

 

n

n

Unstable nucleus

+
+

Particles emitted
accompanied by
 excess energy
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  Figure 2  Radioactive decay

release 1–2 × 10  Ci/yr, a small fraction of which comes from light-water reactors.  Tritium  is6

also a by-product of light-water and heavy-water nuclear reactor operation.  In their coolants,
these reactors produce about 500 to 1,000 and 2 × 10  Ci/yr, respectively, for every 1,0006

MW(e) of power.  Tritium is a fission product within nuclear fuel, generated at a rate of 1!2
× 10  Ci per year/1000 MW(e).  U.S. DOE reactors have produced tritium by the neutron4

bombardment of lithium ( Li).6

Stable and Unstable Nuclides

In the lighter elements, the ratio of neutrons to protons in their stable nuclei is usually 1 (one
neutron for every proton).  For the heavier elements, this ratio gradually increases to about 1.5
(1.5 neutrons for every proton).  Although one cannot always predict from its ratio whether an
isotope is stable or unstable, the relationship between the number of protons and neutrons is
extremely important.

When an isotope is unstable, its nucleus will emit rays or particles or it may split into two
different nuclei.  Some combinations of neutrons and protons lead to stable nuclei.  If there are
too many or too few neutrons, the resulting nucleus is not stable.  This unstable nucleus tries
to become more stable by releasing excess energy.  Atoms with unstable nuclei are radioactive.
The process of nuclei releasing this energy is referred to as radioactive decay or disintegration
(Figure 2).  If a nucleus is still unstable after radioactive decay, further decay will occur.

Ions and Ionization

Atoms can combine chemically to form molecules.  Atoms and molecules are surrounded by
orbiting electrons (negatively charged).  If the number of electrons equals the total number of
protons (positively charged) in the nucleus, the atom or molecule is neutral (uncharged).
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 Figure 3  Neutral and ionized atoms

Electrically charged atoms or molecules are called ions.  Ions are either positively or negatively
charged, depending on the number of orbiting electrons relative to the number of protons in the
nucleus.  As shown in Figure 3, ions with more electrons than protons are negatively charged,
while ions with more protons than electrons are positively charged. The process of breaking a
neutral atom or molecule into electrically charged parts is called ionization.  This process
requires energy. Ionization removes electrons from the atom, or molecule, leaving an ion with
a positive charge. The negatively charged electron (which can attach itself to a neutral atom or
molecule) and the positively charged ion, are called an ion pair.   Radiation that causes
ionization is called ionizing radiation.

Types of Radiation

There are four basic types of ionizing radiation emitted from nuclei:  alpha particles, beta
particles, gamma rays, and neutrons.

C alpha particle (")—consists of two protons and two neutrons and is the same as the
nucleus of a helium atom ( He) (Figure 4).  Generally, only the heavy nuclides can emit4

alpha particles.

A typical example of an "-emitting nuclide is uranium-238:

U6 " + Th + energy  .238 234
92 90

The mass of an alpha particle is about four times the mass of a single neutron or proton, and
has a positive charge of +2 (it has no electrons).  This positive charge causes the alpha  particle



n n

2 neutrons, 2 protons 
no electrons

+

+

Paper or outer layer of skin

"
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Figure 4  Alpha particle (or nucleus of a helium atom)

Figure 5  Alpha shielding

to ionize nearby atoms as it passes through body tissue.  The strong positive charge and its
relatively slow speed (resulting from its large mass) causes the alpha particle to interact strongly
with orbiting electrons of atoms and molecules and to lose large amounts of energy in a short
distance.  This limits the penetrating ability of the alpha particle, making it easy to stop.  A few
centimeters of air, a sheet of paper, or the outer layer of skin stops alpha particles (Figure 5).

Alpha particles are not an external radiation hazard because they are easily stopped by protective
clothing or the outer layer of skin.  However, if an alpha emitter is inhaled or ingested, it becomes
an internal radiation hazard.  Because the source is in close contact with body tissue,  the alpha
particle will dissipate its energy in a short distance of the tissue.

C beta particle ($)—is equivalent to an electron except for its source.  Beta-emitting
nuclides have too many neutrons.  A neutron emits a $ particle, and the neutron is then
converted to a proton.  Tritium decay provides a good example of this process:

H 6 $ + He + energy  .3 3
1 2
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A $ particle is identical to an electron, and its mass and charge are the same as those of an
electron.  As in the case of alpha particles, beta particles ionize atoms by removing electrons
from their orbits.  This reaction occurs from charged particle interactions or "collisions" with
orbiting electrons.

Beta particles penetrate further than alpha particles of the same energy.  A high-energy beta
particle can penetrate a few centimeters of organic tissue.  The higher the energy, the greater
the penetrating ability.  However, low-energy beta particles of tritium can be shielded by skin,
paper, or only about 6 mm of air.

C gamma ray (()—is emitted when the nucleus of a nuclide releases stored energy without
releasing a particle.  Many gamma-emitters are found among the products of nuclear
fission.

During pure ( emission the nucleus does not emit particles or change its nuclear
structure or chemical characteristics. For instance,

X 6 ( + X  .A A
Z Z

Gamma radiation is in the form of electromagnetic waves (or photons).  Gamma rays are similar
to x-rays, but they differ in their origin and energy.  Gamma rays originate within the nucleus,
and x-rays originate outside the nucleus.

Gamma rays have a very high penetrating power because they have no charge or mass.
Depending on their energy, a stream of gamma rays may penetrate with gradually diminishing
intensity through several inches of concrete or similar material.  They can be shielded effectively
by very dense materials, such as lead and uranium.  Gamma rays are a whole-body hazard.  That
is, because of their penetrating ability, the damage caused by gamma rays is not restricted to
any particular body organ.

C neutron (n)—may be emitted spontaneously by heavy nuclei during fission or may be
emitted during radioactive decay.  They are uncharged particles that have mass and a
high penetrating ability.

A neutron has about 2,000 times the mass of an electron, but only one-fourth the mass of an
alpha particle.  Neutrons are difficult to stop because they lack a charge.  Neutrons mainly
interact with matter by striking hydrogen nuclei or interacting with the nucleus of atoms.  These
collisions generally cause charged particles or other radiation to be emitted.  These particles
may then ionize other atoms.  Collisions between neutronsand hydrogen nuclei (protons) are
effective in stopping or slowing down high-energy neutrons.  Neutrons are best shielded by
materials with a high hydrogen content, such as water or plastic (see Figure 6).
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Figure 6 Neutron Shielding

Radio
activity

As radioactive isotopes decay, the number of radioactive nuclei decreases.  The time required
for half of the nuclei in a sample of a specific radioactive isotope to undergo decay is called its
(physical) half-life (Figure 7).  Each radioactive isotope has its own characteristic half-life.
Radioactive isotopes decay to less than 1% of their original quantity after about seven half-lives.

Half-lives vary widely with different radionuclides, as shown by the following examples:

N - 7.35 seconds16

H - 12.43 years3

U - 4.5 × 10  years (4.5 billion years)238 9

The activity of a radioactive isotope sample is defined as the number of nuclei that decay per
unit of time.

It has been shown that for a pure radioactive isotope the number of nuclei decaying per unit time
(rate of decay) is proportional to the number of nuclei available to decay.  If the substance is 
not being replenished, its activity will decrease accordingly.  Therefore, in terms of half-life,   the
remaining activity after a period of time can be expressed as follows:

A  = A  × (1/2)      or     A /A  = 2t o o t
n n
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Figure 7  Half-life example
where:

A = the initial activity (Ci)o

A = activity after elapsed time, t (Ci)t

n = number of half-lives during elapsed time, equal to t/T , where1/2

t = elapsed time (time units)

T = half-life (time units).1/2

For example, assume we have stored 10,000 Ci of tritium.  How many curies will be left after
50 years of storage?

A = 10,000 Cio

n = 50/12.43 = 4.02

A = A  (1/2)t o
n

A = 10,000 (1/2)t
4.02

= 10,000 × 0.062

= 620 Ci (approximately)
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PHYSICAL AND CHEMICAL PROPERTIES OF TRITIUM

This section reviews the nuclear properties of tritium and discusses of some of the physical and
chemical properties that are important in understanding tritium handling, containment, and
contamination control.

Nuclear and Radioactive Properties

Being an isotope of hydrogen, tritium has many of the properties of ordinary hydrogen (such as
chemical reactions, permeability, and absorption).  Differences may occur because the decaying
tritium atoms can speed up (catalyze) reactions of undecayed tritium, or because atoms that have
undergone decay have changed into helium atoms ( He).  Additionally, small differences in chemical3

reaction rates may result from the relative masses of the isotopes.  

Some of the useful properties of tritium are listed in Table 2.  Note that the properties listed are those
of T .  The specific activity and power density of HT and DT are approximately one-half those for2

T .  The activity density of HT and DT is exactly one-half that of T .2 2

Table 2  Important nuclear properties of tritium

Half-Life 12.43 yrs

Specific Activity 9,545 Ci/g

Power Density 0.328 W/g

Activity Density

(T  gas, 1 atm, 0EC) 2.589 Ci/cm2
3

(T  gas, 1 atm, 25EC) 2.372 Ci/cm2
3

 

Penetration Depths of Beta Particles

The penetration and absorption of beta particles in a material are important factors for detecting
tritium and understanding the mechanisms by which tritium can degrade materials.  A beta particle
interacts with matter by colliding with electrons in the surrounding material.  In each collision, the
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beta particle may lose several electron volts (keV)  of energy, and the electron is stripped from itsb

atom (ionization) or promoted to an excited state.  The beta particle has a finite penetration depth
that depends on its energy.

Recall that tritium undergoes beta decay according to the following equation:

H 6 $ + He + energy  .3 3
1 2

The  helium  daughter  ( He) is stable,  but  lighter  than  common helium ( He).  The decay energy2 2
3 4

is constant (18.6 keV), but is shared between the beta particle and an antineutrino (a tiny particle).
The result is that not all beta particles have the same energy.  The average energy is 5.7 keV.
Consequently, not all tritium betas have the same penetration depth in a given   material.  Where
beta ranges are given, it is customary to list both the highest energy and the average, most
representative energy, as listed in Table 3.

Table 3  Penetration depths of tritium betas

Material (keV) on Depth
E($) Penetrati

T  gas, STP 5.7 0.26 cm2
a

T  gas, STP 18.6 3.2 cm2

Air, STP 5.7 0.036 cm

Air, STP 18.6 0.45 cm

Water, soft tissue 5.7 0.42 µm
(and oils/polymers of
density � 1)

Water, soft tissue 18.6 5.2 µm
(and oils/polymers
of density � 1)

Stainless steel 5.7 0.06 µm

a.  STP = Standard temperature (0EC) and pressure (760 Torr).
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With one unimportant exception, tritium is the weakest beta emitter known.  The range of the
most energetic tritium beta particles is only about 5 mm in air or 0.005 mm in water or soft 
tissue.  This range makes it a nonhazard outside the body, but presents a detection problem.
Where other radioisotopes can be detected by virtue of their penetrating radiation, tritium has
 to be introduced directly inside the detector or counter to be measured.

Chemical Properties

Laboratories that have large quantities of tritium usually handle it in the form of HT.  However,
at any time the tritium may be stored on metal getter beds (such as titanium, zirconium, or
uranium).  These beds form weak chemical compounds with hydrogen.  Some of the beds are
stable in air; and others are not and can only be used in certain atmospheres.  The tritium is
released (or delivered) by heating the beds to the required temperature.

Laboratories may also handle tritiated gases (such as ammonia and methane) and other
compounds.  By far the most common of these is HTO,  which is formed from HT whenever it
is exposed to oxygen or water vapor.  The conversion reactions are oxidation and exchange:

oxidation

2HT + O  6 2HTO2

2T  + O  6 2T O2 2 2

exchange

HT + H O 6 H  + HTO2 2

T  + H O 6 HT + HTO2 2

These reaction rates are increased by radiation (from nearby tritium at high concentrations),
heat, or the presence of metal catalysts (especially palladium or platinum).  All chemical
reactions involving hydrogen can also be performed with tritium, sometimes at a higher rate
if the tritium concentration is high enough to catalyze the reaction.  One of the most important
reactions occurs when a tritium atom exchanges with a loosely bonded hydrogen atom of an
organic molecule.  However, where HT is dissolved in water (H O), the exchange process is2

fairly slow because the hydrogen in is tightly bonded and the reaction is not catalyzed.
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Contamination

Tritium as HT or HTO will readily adsorb onto the surface of most metals (such as stainless
steel, copper, or aluminum), plastics, and rubbers.  The tritium will remain fairly close to the
surface unless the metal is heated to a high temperature.  At room temperature, permeation
into these metals is usually extremely slow.  

In the case of metal contamination, the tritium remains on or very close to the surface.  The
contamination can be removed with water or water vapor if the surface is contaminated with
HTO or with hydrogen (H  or D  ) if the contamination is HT.  Heating also speeds up the2 2

decontamination process.  The initial application of heat to surfaces can also be used to prevent
or lessen the contamination by HT or HTO.  Metal surfaces exposed to high pressures of HT
or HTO for extended periods, especially at high temperatures, may allow enough penetration
to cause structural damage to the metal.  This is especially true if the decaying tritium causes
a buildup of helium within the structure of the metal.

If adsorbed onto hydrogenous material, the tritium will easily permeate into the material.  The
HTO will move much more rapidly into the bulk material than will HT.  The permeation rate
varies with the type of material and is accelerated by increasing the temperature.  As a result of
this movement, plastics and rubbers exposed to tritium (especially as HTO) are readily
contaminated deep into the bulk material and are impossible to decontaminate completely.  After
a period of time, the tritium exchanges with bulk hydrogen and presents little biological risk.  

Highly contaminated metal or plastic surfaces may release some of the loosely-bound tritium
immediately after exposure to the contaminating tritiated atmosphere or liquid.  This is referred
to as outgassing.  The personnel risk from outgassing tritium is generally much less than that
from making unprotected skin contact with the outgassing surface.
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BIOLOGICAL PROPERTIES OF TRITIUM

At most tritium facilities, the most commonly encountered forms of tritium are tritium gas (HT)
and tritium oxide (HTO).  Other forms of tritium may be present, such as metal tritides, tritiated
pump oil, and tritiated gases such as methane and ammonia.  As noted earlier, deuterated and
tritiated compounds generally have the same chemical properties as their protium counterparts,
although some minor isotopic differences in reaction rates exist.  These various tritiated
compounds have a wide range of metabolic properties in humans under similar exposure
conditions.  For example, inhaled tritium gas is only slightly incorporated into the body during
exposure, and the remainder is rapidly removed (by exhalation) following the exposure.  On the
other hand, tritiated water vapor is readily taken up and retained in the body water.  In this
Primer, we will address only those compounds likely to be found at DOE laboratories:  gaseous
tritium, tritiated water, other tritiated species, metallic getters, and other tritiated liquids and
gases.

Metabolism of Gaseous Tritium

During a brief exposure to tritium gas, the gas is inhaled and a small amount is dissolved in the
bloodstream.  The dissolved gas circulates in the bloodstream before being exhaled along with
the gaseous waste products (carbon dioxide) and normal water vapor.  If the exposure persists,
the gas will reach other body fluids.  A small percentage of the gaseous tritium is converted to
the oxide (HTO), most likely by oxidation in the gastrointestinal tract.  Early experiments
involving human exposure to a concentration of 9 µCi/mL resulted in an increase in the HTO
concentration in urine of 7.7 × 10  µCi/mL per hour of exposure.  Although independent of  -3

the breathing rate, this conversion can be expressed as the ratio of the HTO buildup to the
tritium inhaled as HT at a nominal breathing rate (20 L/min).  In this context, the conversion 
is 0.003% of the total gaseous tritium inhaled.  More recent experiments with six volunteers
resulted in a conversion of 0.005%.  For gaseous tritium exposures, there are two doses:  (a)
a lung dose from the tritium in the air inside the lung and (b) a whole body dose from the 
tritium gas that has been converted to HTO.  The tritiated water converted from the gas in the
body behaves as an exposure to tritiated water.

Intake of gaseous tritium through the skin has been found to be negligible compared with that
from inhalation.  Small amounts of tritium can enter the skin through unprotected contact with
contaminated metal surfaces, which results in organically bound tritium in skin and in urine.
Ordinarily this is not a serious problem because surfaces highly contaminated with tritium gas
are inaccessible to skin contact.  Also, most tritium exposed to air will be converted to the oxide
form (water vapor) before the internal surfaces of equipment are handled during maintenance
or repair operations.

Metabolism of Tritiated Water

The biological incorporation (uptake) of airborne HTO can be extremely efficient:  up to 99%
of inhaled HTO is taken into the body by the circulating blood.  Ingested liquid HTO is also
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almost completely absorbed by the gastrointestinal tract and quickly appears in the blood stream.
Within minutes, it can be found in varying concentrations in the organs, fluids, and tissues of 
the body.  Skin absorption of airborne HTO is also important, especially during hot weather,
because of the normal movement of water through the skin.  For skin temperatures between 30
and 40EC, the absorption of HTO is about 50% of that for HTO by inhalation (assuming an
average breathing rate associated with light work, 20 L/min).  No matter how it is absorbed, 
the HTO will be uniformly distributed in all biological fluids within one to two hours.  This
tritium has a retention that is characteristic of water.  In addition, a small fraction of the tritium
is incorporated into easily exchanged hydrogen sites in organic molecules.  Hence, retention of
tritiated water can be described as the sum of several terms:  one characteristic of body water,
and one or more longer-term components that represent tritium incorporated into organic
hydrogen sites.

Metabolism of Other Tritiated Species

Most tritium handled in laboratories is in the form of tritiated gas or tritium oxide.  However,
tritium handling operations may form other compounds, such as tritiated hydrocarbons and metal
tritides.  Tritium may also contaminate surfaces and liquids such as pump oil.  These materials
may present special safe handling problems.

Metallic Getters

Although many metals are commonly used for gettering (chemically combining with) tritium,
little information on their metabolic properties is available.  Some of these compounds (such as
uranium tritide and lithium tritide) are unstable in air.  For these, exposure to air produces
different results.  Uranium tritide, being pyrophoric, releases large quantities of tritiated water;
lithium tritide, a hydroxyl scavenger, releases mostly tritium gas.

Tritides of metals (such as titanium, niobium, and zirconium) are stable in air.  For particles of
these tritides, the primary organ of concern is the lungs.  Some of the tritium may leach out in
the lung fluids and then be incorporated into the body water.  These particles may also produce
organically bound tritium from contact with lung tissue, which would further complicate the
metabolic process.  However, in laboratories where such tritiated metals are handled, the
possibility for exposure to airborne particulates of these metals is extremely remote except in
accident situations.

Tritiated Liquids

Next to HTO, the most common tritiated liquid is tritiated vacuum pump oil.  Experience at
DOE facilities has shown that the specific activities of pump oils can easily range from a few
mCi/L to a few tens of Ci/L.  The wide range in specific activities may result from variations in
the tritium concentration and total throughput of tritium.  Depending on the history of these
pumps, the tritium may be found as HT, HTO, or tritiated hydrocarbons.
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Next to pump oils, the next most common group is tritiated solvents.  All solvents can be
absorbed through the skin and are relatively volatile and toxic.  The overall toxicity of tritiated
solvents is usually dominated by the chemical nature of the solvent.

Other Tritiated Gases

If tritium is released in a nitrogen- or air-filled glovebox, other tritiated gases may be formed,
such as ammonia and methane.  The conversion of tritium to tritiated ammonia is small unless
the tritium concentration is very high.  The toxicity of these gases is not believed to be greater
than that of tritium oxide.

Biological Half-Life of HTO

Studies of biological elimination rates of body water in humans date back to 1934 when the body
water turnover rate was measured using HDO.  Since that time, several additional studies have
been conducted with HDO and HTO.  A simple average of the data suggests a value of 9.5 days
for the measured biological half-life of water in the body with a deviation of ±50%.  
Calculations based on total fluid intake indicate a similar value.  This is reasonable because the
turnover rate of HTO should be identical to that of body water.  In other words, the biological
half-life of tritium is a function of the average daily throughput of water.

The biological half-life of HTO has been studied when outdoor temperatures varied at the time
of tritium uptake.  The data suggest that biological half-lives are shorter in warmer months.  For
example, the 7.5-day half-life measured in southern Nigeria is not surprising because the mean
outdoor temperature there averages 27EC.  In contrast, an average 9.5-day half-life was
measured in North America, where the mean outdoor temperature averages 17EC.  Such findings
are consistent with metabolic pathways involving sensible and insensible perspiration.  As such,
the skin absorption and perspiration pathways can become an important part of body water
exchange routes.  It is important to note that personnel who are perspiring will have a greater
absorption of tritium from contact with tritiated surfaces.  For planning purposes, it is customary
to use an average half-life of 10 days.  However, it is not used to calculate doses from actual
exposures.

Prolonged exposures can be expected to affect the biological half-life.  Tritium's interaction with
organic hydrogen can result in additional half-life components ranging from 21 to 30 days and
250 to 550 days.  The shorter duration indicates that organic molecules in the body retain tritium
relatively briefly.  The longer duration indicates long-term retention by other compounds in the
body that do not readily exchange hydrogen or that metabolize more slowly.  However, the
overall contribution from organically bound tritium is relatively small, that is, less than about 
5% for acute exposures and about 10% for chronic exposures.  Methods used to compute the
annual limits on intake of air and water specify only the body water component and include the
assumption of a 10-day biological half-life, as mentioned above.
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Bioassay and Internal Dosimetry

Exposure to tritium oxide (HTO) is by far the most important type of tritium exposure.  The
HTO enters the body by inhalation or skin absorption.  When immersed in tritiated water vapor,
the body takes in approximately twice as much tritium through the lungs as through the skin.
Once in the body, it is circulated by the blood stream and finds its way into fluids both inside 
and outside the cells.

According to International Commission on Radiological Protection (ICRP) Publication 30, the
derived air concentration (DAC)  for tritium gas (HT) and HTO are 540,000 µCi/m  andc 3

21.6 µCi/m , respectively.  The ratio of these DACs (25,000) is based on a lung exposure from3

the gas and a whole body exposure from the oxide.  However, as was noted earlier, when a
person is exposed to HT in the air, an additional dose actually results:  one to the whole body.
During exposure to HT, a small fraction of the tritium exchanges in the lung and is transferred
by the blood to the gastrointestinal tract where it is oxidized by enzymes.  This process results
in a buildup of HTO until the HT is removed by exhalation at the end of the exposure.  The
resultant dose from exposure to this HTO is roughly comparable to the lung dose from exposure
to HT.  Thus, the total effective dose from an HT exposure is about 10,000 times less than the
total effective dose from an equal exposure to airborne HTO.  For both HTO and HT exposures,
a bioassay program that samples body water for HTO is essential for personnel monitoring at
tritium facilities.

Sampling Schedule and Technique

After HTO enters the body, it is quickly distributed throughout the blood system and, within 1
to 2 hours, throughout all water in the body.  Once equilibrium is established, the tritium
concentration is found to be the same in samples of blood, sputum, and urine.  For bioassay
purposes, urine is normally used for determining tritium concentrations in body water.

Workers who may be or who have been exposed to tritium are normally required to submit urine
samples for bioassay periodically.  The sampling period may be daily, biweekly, or longer,
depending on the potential for significant exposure.

Special urine samples are normally required after an incident or a work assignment with a high
potential for exposure.  After a possible exposure, the worker should empty the bladder 1 to
2 hours later.  A sample taken after the bladder is emptied should be reasonably representative
of the body water concentration.  A sample collected before equilibrium is established will not
be representative because of dilution in the bladder, or because of initial high concentration in
the blood.  However, any early sample may still be useful as a sign of the potential seriousness
of the exposure.
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A pure HT exposure is considered as a combination of a lung exposure from the HT and a
whole body exposure from HTO.  The HTO comes from the conversion of HT dissolved in the
blood.  The whole body dose can be determined as outlined above by analysis for HTO in the
urine.  Because the effective dose equivalents from the lung and whole body exposures are
about equal, the total effective dose can be obtained conservatively by multiplying the HTO
whole body dose by 2.  However, in general, this is too conservative because a release of pure
tritium gas with less than 0.01% HTO is highly unlikely.  With only a slight fraction (~0.1%)
of HTO in the air, the total effective dose is essentially the HTO whole body dose determined
by bioassay.

As noted above, tritium-labeled molecules in the skin result from contact with metal surfaces
contaminated with HT.  This form is associated with a longer half-life.  Lung exposure to
airborne metal tritides may also cause unusual patterns of tritium concentrations in body water
because of the slow release of tritium to the blood stream.  If such exposures are possible at the
facility, it is good practice to follow the elimination data carefully and to look for organically
bound tritium in the urine.

The results of the bioassay measurements and their contribution to the worker's dose and
general health must be shared with the worker in a timely fashion.

Dose Reduction

The committed dose following an HTO exposure is directly proportional to the biological
half-life, which in turn is inversely proportional to the turnover rate of body water.  This rate
varies from individual to individual.  Such things as temperature, humidity, work, and drinking
habits may cause rate variations.  Although the average biological half-life is 10 days, it can be
decreased by simply increasing fluid intake, especially diuretic liquids such as coffee, tea, beer,
and wine.  Even though the half-life may be easily reduced to 4 to 5 days in this way, a
physician must be consulted before persons are placed on a regimen that might affect their
health.  Chemical diuretics require medical supervision because the resultant loss of potassium
and other electrolytes can be very serious if they are not replaced.  Such drastic measures can
result in a decrease in half-life to 1 to 2 days.  Even more drastic is the use of peritoneal dialysis
or a kidney dialysis machine, which may reduce the half-life to 13 and 4 hours, respectively.
Such extreme techniques should be used only in life-threatening situations involving potential
committed dose equivalents that would exceed about 100 rem without any treatment. Based
on a 10-day half-life, the committed dose for an intake of 1 mCi of HTO is approximately
63 mrem.

Individuals whose urine concentrations exceed established limits should stop work that involves
possible exposure to radiation, whether from tritium or other sources.  Work restrictions are
suggested or imposed to make certain that the annual dose limits for workers are not exceeded.
The operating group may impose stricter limits on their staff than those imposed by the health
physics group.  Depending on the number of workers available and the importance of the work
to be done, doses can be managed to safe levels (from 5 to 100 µCi/L in urine).
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Results of bioassay sampling should be given to workers who have submitted samples as soon
as they are available.  The results may be posted, or the workers may be notified personally.
Moreover, the results must be kept in the workers' radiation exposure records or medical files.
Like any other radiation exposure, any dose in excess of the limits specified by applicable
regulations must be reported to DOE.
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TRITIUM MONITORING

The tritium monitoring system at a tritium handling facility is critically important to its safe
operation.  Operators and others at the facility need to be informed of the status of the processes,
the development of any leaks in the primary or secondary containments, or of any releases to the
room or environment so that protective measures and corrective action may be taken quickly.
The location and degree of surface contamination are equally important to prevent accidental
uptakes of tritium by personnel.

In this section, the various techniques used to monitor for tritium in gases (including air), in
liquids, and on surfaces will be discussed.

Air Monitoring

Fixed ionization chamber instruments are the most widely used instruments for measuring
gaseous forms of tritium in laboratory and process monitoring applications.  Portable ionization
chamber instruments are also used to control contamination and to supplement fixed instrument
measurements.  Such simple devices require only an electrically polarized ionization chamber,
suitable electronics, and a method for moving the gas sample through the chamber—usually a
pump.  Chamber volumes typically range from a tenth to a few tens of liters, depending on the
required sensitivity.  The output is usually given in units of concentration (typically µCi/m ) or,3

if a commercial electrometer or picoammeter is used, in current units that must be converted to
those of tritium concentration.  The following rule-of-thumb can be used to convert current to
concentration:  10  × current (amps)/chamber volume (liters) = concentration (µCi/m ).  For15 3

real-time tritium monitoring, the practical lower limits of sensitivity range from 0.1 to 10 µCi/m .3

External background radiation or the presence of radon can lower the sensitivity of the
instrument.

For measurements of low concentrations, sensitive electrometers are needed.  For higher
concentrations (>1 mCi/m  for example), the requirements on the electronics can be relaxed,3

and smaller ion chambers may be used.  Smaller chambers also need less applied voltage.
Because of a greater ratio of surface area to volume, residual contamination in the chamber is
more likely and is called "memory." This residual contamination elevates the background
chamber current.  Response times for higher level measurements can be made correspondingly
shorter.  However, because small chambers and chambers operated at low pressures may have
significant wall effects, the above rule-of-thumb may not apply.  Such instruments would have
to be calibrated to determine their response.

Although most ionization chambers are the flow-through type that require a pump to provide
the flow, a number of facilities use "open window" or "perforated wall" chambers.  These 
chambers, which employ a dust cover to protect the chamber from particulates, allow the air
or gas to penetrate through the wall to the inside chamber without the need for a pump.  These
instruments are used as single point monitors to monitor rooms, hoods, gloveboxes, and ducts.
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Differential Air Monitoring

Because HTO is more toxic than HT (10,000 to 25,000 times greater), it may be
desirable to know the relative amounts of each species following a significant release into
a room or to the environment.  In the case of stack monitoring, discrete samples of the
stack effluent should be taken using bubblers or desiccants with a catalyst for oxidizing
the HT.  Another technique for differential monitoring uses a desiccant cartridge in the
sampling line of an ionization chamber monitor.  The result is a measurement of the HT
concentration. Without the cartridge, the total tritium concentration is measured.
Subtraction of HT from the total produces the HTO concentration.  The technique may
be used with two instruments or one instrument in which the desiccant cartridge is
automatically switched in and out of the sampling line.  

Another technique uses a semipermeable membrane tube bundle in the sampling line to
remove the HTO (preferentially over the HT), which is directed to an HTO monitor.
After removing the remaining HTO with another membrane dryer, the sampled air is
directed to the HT monitor.  Although this technique is slower than the one requiring a
desiccant cartridge, it does not require a periodic cartridge replacement.  Furthermore,
it can be adapted to measure tritium in both species in the presence of noble gases or
other radioactive gases by adding a catalyst after the HTO dryers, followed by additional
membrane dryers for the HTO.  However, because of its slow response, it is more
suitable for effluent or stack monitoring than for room monitoring.  Because significant
releases into a room are quite rare, it is easier to treat any such release as one of HTO
than use complicated techniques for continuous differential monitoring.

Discrete Air Sampling

Discrete sampling differs from real-time monitoring in that the sampled gas (usually air)
must be analyzed for tritium content (usually by liquid scintillation counting).  The usual
technique is to flow the sampled air through either a solid desiccant (molecular sieve,
silica gel, or Drierite) or water or glycol bubblers.  For low-flow rates (about 0.1 to 1
L/min), bubblers may be used.  Bubblers are more convenient for sampling, but are less
sensitive than the solid desiccant cartridges if the water in the desiccant is recovered by
heating.  Glycol or water may be used, but glycol is preferred for long-term sampling.
In any case, the collected water is then analyzed for HTO.  For differential monitoring
of HTO and HT, a heated catalyst (usually a palladium sponge) is used between the HTO
desiccant cartridge or bubblers and the HT cartridge or bubblers.  This is currently the
preferred method for monitoring stacks for reporting purposes.  In a different
arrangement, palladium is coated on the molecular sieve in the HT cartridge to oxidize
the HT into HTO, which is then absorbed by the molecular sieve.  However, this
technique is used primarily for environmental monitoring.

Another technique for sampling HTO in room air is to use a "cold finger" to freeze HTO
out of the air.  An alcohol and dry ice mixture in a stainless steel beaker works well.    To
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determine the concentration, the relative humidity must be known.  Another sampling
technique is to squeeze a soft plastic bottle several times to introduce the air (containing
the HTO) into the bottle.  A measured quantity of water is then introduced, and the bottle
is capped and shaken.  In a minute or less, essentially all the HTO is taken up by the
water, which is then analyzed.

Other techniques involve placing a number of vials or other small specially designed
containers of water, cocktail, or other liquid in selected locations in the area being
monitored.  After a period of time (usually a number of days), the liquid in the  
containers is analyzed.  The result is qualitative (for open containers) to semiquantitative
(for specially designed containers).

Process Monitoring

Ionization chambers are typically used for monitoring stacks, rooms, hoods, glove boxes,
and processes.  The outputs can be used to sound alarms, activate ventilation valves,
activate detritiation systems, and perform other functions.  In general, it can be expected
that stack, room, and hood monitors will require little nonelectronic maintenance (i.e.,
chamber replacement because of contamination).  Under normal circumstances, the
chambers are constantly flushed with clean air and are not exposed to high tritium
concentrations.  However, glove box monitors can be expected to eventually become
contaminated, especially if exposed to high concentrations of HTO.  Process HT monitor
backgrounds can also be expected to present problems if a wide range of concentrations
(4 to 5 orders of magnitude) are to be measured.

Mass spectrometers, gas chromatographs, and calorimeters are the main instruments used
for process monitoring.  Because of their relative insensitivities, these instruments cannot
detect tritium much below a few parts per million (Ci/m ).  For this reason, the  3

analytical results and the related health physics concerns must be interpreted carefully.
It is not uncommon to find that samples showing no trace of tritium when analyzed on
a mass spectrometer may actually have a concentration of several curies of tritium per
cubic meter.  In spite of their contamination problems, ionization chamber instruments
are useful for measuring these lower concentrations and for providing instant indications
of changing concentrations that are not possible with the more sophisticated instruments.

Surface Monitoring

Any material exposed to tritium or a tritiated compound has the potential of being contaminated.
Although it is difficult to quantify tritium contamination levels, several methods are available 
 to evaluate the extent of contamination, including smear surveys and off-gassing measurements.
Good housekeeping and work practices are essential in maintaining contamination at acceptable
levels.

For health or safety implications, an indication of loose, removable tritium contamination is  
more valuable than a measurement of the total surface contamination.  Loose tritium can be
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transferred to the body by skin contact or inhalation if it becomes airborne.  As a result, loose
contamination is routinely monitored by smears, which are wiped over a surface and then
analyzed by liquid scintillation or proportional counting.

The smears are typically small round filter papers used dry or wet (with water, glycol, or
glycerol).  Wet smears are more efficient in removing tritium, and the results are more
reproducible, although the papers are usually more fragile when wet.  However, results are only
semiquantitative, and reproducibility within a factor of 2 agreement (for wet or dry smears) is
considered satisfactory.  Ordinarily, an area of 100 cm  of the surface is wiped with the smear2

paper and quickly placed in a vial with about 10 mL of liquid scintillation cocktail, or 1 or 2 mL
of water with the cocktail added later.  The paper must be placed in liquid immediately after
wiping because losses from evaporation can be considerable, especially if the paper is dry.  The
efficiency of the liquid scintillation cocktail is only slightly affected by the size of the swipe. 
Foam smears are also available commercially.  These smears dissolve in most cocktails and do
not interfere significantly with the normal counting efficiency.  

Smears may be counted by gas-flow proportional counting.  However, because of the inherent
counting delays, tritium losses before counting can be significant.  Moreover, counting
efficiencies may be difficult to determine and may vary greatly from one sample to the next.
Another drawback is potential contamination of the counting chamber when counting very "hot"
smears.  For all of these reasons, a liquid scintillation spectrometer is the preferred system.

An effective tritium health physics program must specify the frequency of routine smear surveys.
Each facility should develop a routine surveillance program that may include daily smear surveys
in laboratories, process areas, step-off pads, change rooms, and lunchrooms.  In many locations
within a facility, weekly or monthly routine smear surveys may be sufficient.  The frequency
should be dictated by operational experience and the potential for contamination.  In addition
to the routine survey program, special surveys should be made following spills or on potentially
contaminated material being transferred to a less controlled area to prevent the spread of
contamination from controlled areas.

The surface contamination levels acceptable for the release of materials from radiological areas
may be found in the DOE Radiological Control Manual and DOE Order 5400.5.

Tritium Probes

In general, the total tritium contamination on a surface can be measured only by
destructive techniques.  When tritium penetrates a surface even slightly, it becomes
undetectable because of the weak energy of its beta particles.  With open-window probes
operated in the Geiger Mueller (GM) or proportional regions, it is possible to measure
many of the betas emitted from the surface.  Quantifying that measurement in terms of
the total tritium present is difficult because the history of every exposure is different.
Consequently, the relative amounts of measurable and unmeasurable tritium are different.
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Such monitoring probes are used to survey areas quickly before more careful monitoring
by smears, or to monitor the smears themselves while in the field. 

The probe must be protected carefully from contamination.  When monitoring a slightly
contaminated surface after monitoring a highly contaminated one, contamination of the
probe can be an immediate problem.  Placing a disposable mask over the front face of 
the probe can reduce, but never eliminate this contamination, particularly if the tritium
is rapidly outgassing from the surface.  Sensitivity of the instrument depends on many
factors, but should be about 10  to 10  dpm/cm .3 4 2

For highly contaminated surfaces (>1 mCi/100 cm ), a thin sodium iodide crystal or a2

thin-window GM tube can be used to measure the characteristic and continuous x-rays
(Bremsstrahlung) emitted from the surface as a result of the interaction of the beta
particle with the surface material.  

Off-Gassing Measurements

Off-gassing can be measured using one of two methods.  The simplest method is to
"sniff" the surface for airborne tritium using a portable or fixed tritium monitor.  The
most reliable method, however, uses a closed-loop system of known volume and a flow-
through ionization chamber monitor.  By placing the sample inside the volume and
measuring the change in concentration over time, tritium off-gassing rates can be
determined accurately on virtually any material.  The initial off-gassing rate is the
required value because the equilibrium concentration may be reached quickly in a closed
volume, especially if the volume is small because of recontamination by the airborne
tritium.

The uptake of tritium from off-gassing materials is difficult to predict.  Off-gassing
tritium that is readily measured indicates contaminated equipment that should not be
released for uncontrolled use.

Liquid Monitoring

Liquid is almost universally monitored by liquid scintillation counting.  The liquid must be
compatible with the cocktail.  Certain chemicals can degrade the cocktail.  Others may retain
much of the tritium; still others result in a high degree of quenching.  In addition, samples that
contain peroxide or that are alkaline may result in chemiluminescence that can interfere with
measuring.  Such samples should first be neutralized before counting.  Chemiluminescence and
phosphorescence both decay with time.  Phosphorescence, activated by sunlight or fluorescent
lighting, decays in the dark in a few minutes (fast component) to several days (slow component).
Chemiluminescence, the result of chemical interaction of sample components, may take days to
decay at room temperatures, but takes only hours to decay at the cold temperatures of a
refrigerated liquid scintillation spectrometer.  Distillations may be necessary for some samples.
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For rather "hot" samples, as may be the case for vacuum pump oils, Bremsstrahlung counting
may be useful.  This technique may also be useful for active monitoring of "hot" liquids.  Liquids
may be monitored actively with scintillation flow cells, which are often made of plastic 
scintillator material or of glass tubing filled with anthracene crystals.  However, both types are
prone to memory effects that result from tritium contamination.  In addition, flow cells are also
prone to contamination by algae or other foreign material that can quickly degrade their counting
efficiency.
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RADIOLOGICAL CONTROL AND PROTECTION PRACTICES

Airborne Tritium

Tritium released to room air moves readily with normal air current.  The room or building
ventilation system should be designed to prevent the air from being carried to uncontaminated
areas, such as offices or other laboratories where tritium is not allowed.  For that reason,
differential pressure zoning is commonly used, and released tritium is directed outside through
the building stack.  In some newer facilities where the large quantities of tritium are being
handled, room air cleanup systems are available for emergency use.  Following a significant
release, the room ventilation system is effectively shut down, the room is isolated, and cleanup
of room air is begun.

Secondary Containment

The most important control for preventing a release of tritium to the room atmosphere
is the use of containment around the source of tritium.  This containment usually takes
the form of a glove box, which is then a secondary containment if the tritium is already
contained within the process plumbing, which is the primary containment.  Even if the
tritium is on the outside surface of a piece of equipment and located inside the glove box,
through popular usage, the box is still referred to as the secondary containment.

Glove boxes used for tritium work typically are made of stainless steel or aluminum and
use gloves made of butyl, neoprene, or Hypalon.  Windows are made of glass or Lexan.
In order to reduce the amount of tritium released to the atmosphere, glove boxes where
significant quantities of tritium are handled incorporate detritiation systems that process
the glove box atmosphere and remove the tritium.  These detritiation systems, including
the room cleanup systems mentioned above, convert released HT to HTO and collect the
HTO on a molecular sieve for later recovery or burial.  Newer systems use metal getters
that recover HT without resorting to oxidation.  These getters, which can only be used
in certain glove box atmospheres, can be heated to release and recover the HT easily.

The atmosphere in the glove box may be air, nitrogen, argon, or helium, depending on
the type of activity in the box.  Even in boxes with inert gas atmospheres, small amounts
of moisture and oxygen exist.  Any release of tritium gas in the box will eventually be
converted to the oxide.  As a result, the oxide will slowly diffuse through the gloves and
contaminate their outside surfaces.  For that reason, personnel using glove boxes that
have had tritium releases are required to wear one or more additional pairs of disposable
gloves when working in the glove box.

Glove box monitors are used to alert personnel of a release in the box and may be used
to activate a cleanup system or to increase the rate of the cleanup process.  With releases
of tritium in the box, the monitor chamber will eventually develop a memory from
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contamination, mainly by HTO.  Heated monitor chambers are useful in minimizing
contamination by HTO.

The relative pressure of the glove box atmosphere is normally kept negative in order to
prevent the gloves from hanging outside the box where passersby may brush against them
and to prevent tritium from escaping into the room should a leak develop in the glove
box.  However, outward permeation of HTO through the gloves and inward permeation
of room moisture are not affected by the pressure inside the glove box.

Temporary Enclosures

At times, maintenance or repair work is done on equipment that cannot be moved into a
glove box or fume hood and that has a high potential to release tritium.  For these
activities a temporary box ("tent"), may be constructed over the equipment, and an
existing cleanup system installed to process the air.  Alternatively, if the tritium at risk
is not significant, the enclosing atmosphere may be purged to the stack.  If the enclosure
is small, gloves and glove ports may be fitted to the side of the enclosure.  For larger
enclosures entry may be required.  In such cases, personnel must work in air-supplied
suits inside the enclosure.

Protection by Local Ventilation

In spite of the greater protection afforded by glove boxes, fume hoods are commonly
used at tritium facilities for handling or storing material with low quantities of tritium or
with low-level contamination.  Limits are generally imposed on the quantities used or
stored in these hoods.

Fume hoods are also used to protect personnel at the outside door of glove-box pass
boxes where materials are passed into and out of the boxes.  Ideally, any tritium released
in a hood from outgassing or a leaky container, for instance, is routed to the hood's
exhaust duct.  However, turbulence may occur at the hood entrance, resulting in
backwash and possible contamination of personnel if the face velocity is not adequate for
the design of the hood, the activities in the hood, or the local conditions (such as traffic
in front of the hood).  No hood should be used that has not been thoroughly surveyed
and judged acceptable for tritium use.

For small operations local ventilation is commonly provided at the work site through a
flexible ventilation duct ("elephant trunk") directed to the room exhaust system.  The
exhaust of these ducts is generally directed to the building ventilation exhaust system,
which of itself may be adequate to supply the needed air flow for the duct without help
from an additional in-line blower.
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Flexible ducts can provide adequate ventilation during maintenance in a glovebox with
a panel removed.  In this application, a flexible duct can be connected to a gloveport
before the panel is removed, and then the work can proceed safely. 

Supplied-Air Respirators

In general, only supplied-air respirators are effective in preventing inhalation of airborne
tritium.  Two types of air-supplied respirators are available:   self-contained breathing
apparatus (SCBA) and full-face supplied air masks.

An SCBA, consisting of a full-face mask fed by a bottle of compressed air carried on the
worker's back, provides excellent protection against HTO inhalation.  Because the mask
provides no protection against absorption by most of the skin, the SCBA is normally
reserved for emergency use only.  The protection factor of 3 or more afforded by the
SCBA may be adequate for some applications.  An SCBA can be used as an added
precaution during certain maintenance or operations that experience has shown should
not result in the release of significant amounts of HTO.  Nevertheless, the potential for
exposure is real, and the SCBA gives the worker time to leave the area if necessary
before a skin exposure occurs.

Full-face supplied-air masks are also available.  Because the air is normally supplied by
a fixed-breathing-air system, they are not practical for many emergency situations and,
consequently, are not as popular as SCBAs.

Supplied-Air Suits

Because of the inherent disadvantages associated with respirators and other breathing
apparatus, supplied-air plastic suits that completely enclose the body are often used by
facilities that handle large quantities of tritium.  Although they afford reasonably
complete body protection, they are slow to don and cumbersome to wear.  For these
reasons, they are not favored for rescue work where time and mobility are important
considerations.  For certain maintenance operations outside of glove boxes with a high
degree of risk, supplied-air suits may be quite useful.

For tritium work, supplied-air suits are constructed of materials that have acceptable
permeation protection against HTO and provide good tear and abrasion resistance.
Because of the closed environment, and the additional background noise caused by the
flow of air into the suits, communication between personnel may require special
equipment or methods.

Protection from Surface Contamination

Experience at tritium laboratories has shown that many tritium exposures to personnel occur as
a result of contact with highly contaminated surfaces.  Sudden and significant releases of 
airborne tritium occur mostly as the less toxic form HT and are quickly detected by portable or
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strategically placed, fixed tritium monitors.  The result is that the exposure and uptake of
airborne tritium are minimized.  (Heavy-water reactors, of course, present a more significant 
risk of exposure to tritiated water vapor than to tritium gas.)  The presence and degree of
contamination may be unknown until measurements are made.  Consequently, the importance
of routine and special monitoring surveys for surfaces that personnel might contact cannot be
overestimated.

Protective clothing worn by workers is one of the most important aspects of an effective health
physics program.  Because tritium can be absorbed easily through the skin or by inhalation,
personnel protective equipment must protect against both exposure routes.  The following
paragraphs describe protective measures and equipment.

Protective Clothing

Lab Coats and Coveralls

Lab coats and coveralls (fabric barriers) are worn in most tritium facilities.  Lab coats 
are routinely worn to protect personal clothing.  Coveralls are sometimes worn for added
protection instead of a lab coat when the work is unusually dusty, dirty, or greasy.  The
protection afforded by lab coats and coveralls is minimal (except for short exposures)
when tritium is airborne, but they are more effective in preventing skin contact with
contaminated surfaces.

Disposable water-proof and water-resistant lab coats and coveralls have been tested at
various laboratories.  They are not popular for everyday use because of the cost and
excessive discomfort inflicted on the worker.  Most facilities prefer using ordinary
open-weave fabrics for lab coats and coveralls and using an approved laundry for
contaminated clothing.  Some facilities have chosen to use disposable paper lab coats and
coveralls, exchanging the costs associated with a laundry for the costs associated with
replacement and waste disposal.

Shoe Covers

Although shoe covers provide protection against the spread of contamination and
exposure, the routine use of shoe covers in a tritium facility is usually weighed against
actual need.  Shoe covers can offer both a degree of personnel protection and control
over the spread of contamination on floors.  However, in modern facilities where tritium
is largely controlled by the use of secondary containment, shoe covers may not be
required.  Such facilities can easily maintain a clean laboratory environment by the use
of regular smear surveys and good housekeeping.  Using liquid-proof shoe covers until
spills are cleaned up should be considered following spills of tritium-contaminated liquids
and solids to prevent the spread of local contamination.



Tritium Primer DOE-HDBK-1079-94 RADIOLOGICAL CONTROL

d.  W. R. Bush, Assessing and Controlling the Hazard from Tritiated Water, AECL-4150, Atomic    
Energy of Canada LTD., Chalk River, Ontario, 1972.

                                                               
Rev. 0   TritiumPage 31

Gloves

In most operations, the hands and forearms of workers are vulnerable to contact with
tritium surface contamination.  The proper use and selection of gloves are essential.

Many factors should be considered in selecting the proper type of glove.  These include
chemical compatibility, permeation resistance, abrasion resistance, solvent resistance,
glove thickness, glove toughness, glove color, shelf life, and unit cost.  Gloves are
commercially available in butyl rubber, neoprene, polyvinyl chloride (PVC) plastics, 
latex, etc. 

The most common gloves found in tritium laboratories are the light-weight, disposable
short glove (usually PVC or latex) used for handling lightly contaminated equipment.
Depending on the level of contamination, such gloves may be changed frequently (every
10–20 minutes), a second pair may be worn, or heavier gloves may be used instead.
When using gloves for this purpose, the work should be planned so that contaminated
gloves doe not spread contamination to surfaces that are being kept free of contamination.

When working in a glove box using the box gloves, disposable gloves are worn to
prevent uptake of HTO contaminating the outside of the box gloves.  Again, depending
on the level of contamination, more than one additional pair may be required, one of
which may be a longer, surgeon's length, glove.

In spite of all the precautions normally taken, workers may occasionally be contaminated
with tritium.  The skin should be decontaminated as soon as possible after any potential
skin exposure to minimize absorption into the body.  Effective personal decontamination
methods include rinsing the affected part of the body with cool water and soap.  If the
entire body is affected, the worker should shower with soap and water that is as cool as
can be tolerated.  Cool water keeps the pores of the skin closed and reduces the transfer
of HTO across the skin.  The importance of washing the affected skin as soon as possible
after contamination cannot be over-emphasized.  Figure 8  illustrates the effect of speedd

on reducing the uptake and the resultant dose.  Even if gloves are worn when handling
contaminated equipment or when working in contaminated glove box gloves, it is good
practice to wash the hands after removing the gloves.
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Figure 8 Reducing HTO uptake by washing after exposure to HTO vapor.
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EMERGENCY RESPONSE

It is important to examine the history of accidents that have occurred in tritium facilities and to
consider foreseeable unplanned events in order to minimize or mitigate their effects or to prevent
their taking place at all.  When an accident does occur, requirements for reporting accidents must
be followed.

Facilities that handle significant quantities of radioactive material must have a site-specific
emergency plan.  All radiological workers at the site must be familiar with certain aspects of this
plan.  In addition, job assignments involving radiological hazards are typically covered by
procedures and work permits that include steps for emergency situations that may arise during the
course of the work.  Radiological workers must be familiar with these procedures or be
accompanied by a radiological control technician (RCT) to provide guidance in case of an
emergency.

Emergency Steps to Take

The initial steps to be undertaken following a serious accident must always include the following:

C Warning others in the vicinity

C Evacuating the laboratory if an airborne release has occurred

C Requesting any necessary assistance

C Giving urgent first aid in the event of serious injuries (This should take priority over
problems that arise from contamination)

C Starting personnel decontamination procedures

C Submitting urine samples following the schedule outlined for nonroutine samples.

Decontamination of Personnel

Personnel should be decontaminated by the following procedure:

C Remove clothing thought to be contaminated

C Wash hands with soap and cool water

C Wash other parts of the body (such as face, hair, and arms) that may have been exposed to
tritium, or immediately shower with cool water and soap
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C If mouth-to-mouth resuscitation must be given to a contaminated victim, the victim's
mouth should first be wiped with a damp cloth.

Decontamination of Surfaces

Following a tritium spill involving a liquid with high specific activity, the area may have to be
isolated and other protective measures taken before cleaning up the liquid. Monitoring for
possible airborne tritium must be started to determine the need for respiratory protection or skin
protection.  After the spill has been cleaned up, residual contamination will remain.  Depending
on the level of contamination, any further steps needed to prevent the spread of contamination
and reduce the level to an acceptable value should be determined.  

Following a release of tritium gas, surfaces would not be expected to be heavily contaminated.
If tritiated water vapor is released, the contamination may be greater, depending on the amount
and activity of the released vapor.  In any case, smear and air surveys will be used to determine
the course of action needed to control and reduce the contamination safely.
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